

Hierarchical matrices. Part 1.

Alexander Litvinenko

KAUST, SRI-UQ Center .ttp://sri-uq.kaust.edu.sa/

www.hlibpro.com

- 1. Motivation
- 2. Low-rank matrices
- 3. Cluster Tree, Block Cluster Tree and Admissibility condition
- 4. 1D BEM example
- 5. Hierarchical matrices: cost and storage
- 6. Two applications

Used: H-matrices Winter School Script (www.hlib.org), PhD thesis of Ronald Kriemann, preprints from www.mis.mpg.de

$$Ax = b$$

Iterative methods: Jacobi, Gauss- Seidel, SOR, ... Direct solvers: Gaussian elimination, domain decompositions, LU,... Cost of A^{-1} is $\mathcal{O}(n^3)$, number of iteration is proportional to $\sqrt{\operatorname{cond}(A)}$.

If A is structured (diagonal, Toeplitz, circulant) then can apply e.g. FFT, but if not ? What if you need not only $x = A^{-1}b$, but f(A) (e.g. A^{-1} , exp A, sin A, sign A, ...)?

Figure : The \mathcal{H} -matrix approximation of the stiffness matrix of the Poisson problem (**left**) and its inverse (**right**). The dark blocks are dense matrices. The light blocks are low-rank matrices with maximal rank $k_{max} = 5$.

 $M \in \mathbb{R}^{n \times m}$, $U \approx \tilde{U} \in \mathbb{R}^{n \times k}$, $V \approx \tilde{V} \in \mathbb{R}^{m \times k}$, $k \ll \min(n, m)$. The storage $\tilde{M} = \tilde{U} \tilde{\Sigma} \tilde{V}^T$ is k(n+m) instead of $n \cdot m$ for M represented in the full matrix format.

Figure : Reduced SVD, only *k* biggest singular values are taken.

\mathcal{H} -matrices (Hackbusch '99)

1. Build cluster tree T_I and block cluster tree $T_{I\times I}$.

Admissible condition

2. For each $(t \times s) \in T_{I \times I}$, $t, s \in T_I$, check admissibility condition $\min\{diam(Q_t), diam(Q_s)\} \leq \eta \cdot dist(Q_t, Q_s)$.

if(adm=true) then $M|_{t\times s}$ is a rank-k matrix block if(adm=false) then divide $M|_{t\times s}$ further or define as a dense matrix block, if small enough.

Resume: Grid \rightarrow cluster tree (T_I) + admissibility condition \rightarrow block cluster tree $(T_{I\times I})$ \rightarrow \mathcal{H} -matrix \rightarrow \mathcal{H} -matrix arithmetics.

Where does the admissibility condition come from?

Let B_1 , $B_2 \subset \mathbb{R}^d$ are compacts, and $\chi(x,y)$ is defined for $(x,y) \in B_1 \times B_2$ with $x \neq y$.

Let K be an integral operator with an asymptotic smooth kernel χ in the domain $B_1 \times B_2$:

$$(\mathcal{K}v)(x) = \int_{B_2} \chi(x,y)v(y)dy \quad (x \in B_1).$$

Suppose that $\chi^{(k)}(x,y)$ is an approximation of χ in $B_1 \times B_2$ of the separate form:

$$\chi^{(k)}(x,y) = \sum_{\nu=1}^{k} \varphi_{\nu}^{(k)}(x) \psi_{\nu}^{(k)}(y),$$

where k is the rank of separation.

Then
$$\|\chi - \chi^{(k)}\|_{\infty, B_1 \times B_2} \le c_1 \left[\frac{c_2 \min\{diam(B_1), diam(B_2)\}}{dist(B_1, B_2)} \right]^k$$
.

H-Matrix Approximation of BEM Matrix

Consider the following integral equation

$$\int_0^1 \log |x - y| U(y) dy = F(x), \qquad x \in (0, 1).$$

After discretisation by Galerkin's method we obtain

$$\int_0^1 \int_0^1 \phi_i(x) \log |x-y| U(y) dy dx = \int_0^1 \phi_i(x) F(x) dx, \qquad 0 \leq i < n,$$

in the space $V_n:=span\{\phi_0,...,\phi_{n-1}\}$, where $\phi_i,\ i=1,...,n-1$, are some basis functions in BEM. The discrete solution U_n in the space V_n is $U_n:=\sum_{j=0}^{n-1}u_j\phi_j$ with u_j being the solution of the linear system

$$Gu = f, \ G_{ij} := \int_0^1 \int_0^1 \phi_i(x) \log |x - y| \phi_j(y) dy dx, \ f_i := \int_0^1 \phi_i(x) F(x) dx.$$

We replace the kernel function $g(x, y) = \log |x - y|$ by a degenerate kernel

$$\tilde{g}(x,y) = \sum_{\nu=0}^{\kappa-1} g_{\nu}(x) h_{\nu}(y).$$
 (2)

Then we substitute $g(x, y) = \log |x - y|$ in (1) for $\tilde{g}(x, y)$

$$\widetilde{G}_{ij}:=\int_0^1\int_0^1\phi_i(x)\sum_{j=0}^{k-1}g_{
u}(x)h_{
u}(y)\phi_j(y)dydx.$$

After easy transformations

$$ilde{G}_{ij} := \sum_{\nu=0}^{k-1} (\int_0^1 \phi_i(x) g_{
u}(x) dx) (\int_0^1 h_{
u}(y) \phi_j(y) dy).$$

Now, all admissible blocks $G|_{(t,s)}$ can be represented in the form

$$G|_{(t,s)} = AB^T, \quad A \in \mathbb{R}^{|t| \times k}, \quad B \in \mathbb{R}^{|s| \times k},$$

where the entries of the factors A and B are

$$A_{i\nu} := \int_0^1 \phi_i(x) g_{\nu}(x) dx, \quad B_{j\nu} := \int_0^1 \phi_j(y) h_{\nu}(y) dy.$$

We use the fact that the basis functions are local and obtain for all inadmissible blocks:

$$\tilde{G}_{ij} := \int_{i/n}^{(i+1)/n} \int_{i/n}^{(j+1)/n} \log|x - y| dy dx.$$

Storage and complexity (single proc. and p-proc. on shared mem.)

Let $\mathcal{H}(T_{I \times J}, k) := \{ M \in \mathbb{R}^{I \times J} \mid rank(M \mid_{t \times s}) \leq k \text{ for all admissible leaves } t \times s \text{ of } T_{I \times J} \}, \ n := \max(|I|, |J|, |K|).$

Operation	Sequential Compl.	Parallel Complexity
		(R.Kriemann 2005)
building(M)	$N = \mathcal{O}(n \log n)$	$\frac{N}{p} + \mathcal{O}(V(T) \setminus \mathcal{L}(T))$
storage(M)	$N = \mathcal{O}(kn\log n)$	N
Mx	$N = \mathcal{O}(kn \log n)$	$\frac{N}{p} + \frac{n}{\sqrt{p}}$
$\alpha M' \oplus \beta M''$	$N = \mathcal{O}(k^2 n \log n)$	$\frac{N}{p}$
$\alpha M' \odot M'' \oplus \beta M$	$N = \mathcal{O}(k^2 n \log^2 n)$	$\frac{N}{p} + \mathcal{O}(C_{sp}(T) V(T))$
M^{-1}	$N = \mathcal{O}(k^2 n \log^2 n)$	$\frac{N}{p} + \mathcal{O}(nn_{min}^2)$
LU	$N = \mathcal{O}(k^2 n \log^2 n)$	N
H-LU	$N = \mathcal{O}(k^2 n \log^2 n)$	$\frac{N}{p} + \mathcal{O}(\frac{k^2 n \log^2 n}{n^{1/d}})$

1. Matrix exponential allows us to solve ODEs

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0, \quad \rightarrow x(t) = \exp(tA)x_0$$

Other matrix function: use representation by the Cauchy integral

$$f(M) = \frac{1}{2\pi i} \oint_{\Gamma} f(t) (M - tI)^{-1} dt$$

and exponentially convergent quadrature rule

$$f(M) \approx \sum_{j=1}^k w_j f(t_j) (M - t_j I)^{-1}$$

to be approximated.

- + Complexity and storage is $\mathcal{O}(k^r n \log^q n)$, r = 1, 2, 3, q = 1, 2
- + Allow to compute f(A) efficiently for some class of functions f
- + Many examples: FEM 1D, 2D and 3D, BEM 1D,2D and 3D, Lyapunov, Riccati matrix equations
- + Well appropriate to be used as a preconditioner (for iterative methods)
- + There are sequential (www.hlib.org) and parallel (www.hlibpro.com) libraries
- + There are A LOT of implementation details!
- Not so easy implementation
- Can be large constants in 3D

Thanks for your attention!

